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Abstract 

Battery Management Systems (BMS) are crucial for the safe and efficient operation of lithium-ion batteries in 
applications ranging from electric vehicles to grid storage. While Artificial Intelligence (AI) and Machine Learning (ML) 
have significantly advanced BMS capabilities, particularly in state estimation and fault diagnosis, the inherent 'black-
box' nature of many complex models raises concerns about reliability, trustworthiness, and safety. Explainable Artificial 
Intelligence (XAI) offers methods to render these AI/ML models transparent and interpretable. This paper provides a 
comprehensive review of the application of XAI techniques within various BMS tasks. We survey the literature on XAI 
applied to state-of-charge (SOC), state-of-health (SOH), and remaining useful life (RUL) estimation, as well as fault 
detection and diagnosis, and charging management. Key XAI methodologies employed in BMS research, such as SHAP, 
LIME, attention mechanisms, and inherently interpretable models, are discussed. We analyze current trends, identify 
significant challenges including real-time implementation, evaluation of explanations, and data limitations, and suggest 
promising future research directions. This review aims to serve as a valuable resource for researchers and practitioners 
seeking to develop more transparent, reliable, and trustworthy intelligent BMS solutions. 

Keywords:  Explainable AI (XAI); Battery Management System (BMS); Lithium-Ion Battery; State Estimation; Fault 
Diagnosis; Machine Learning 

1 Introduction 

Lithium-ion batteries (LIBs) have become ubiquitous energy storage solutions, powering electric vehicles (EVs), 
portable electronics, and grid-scale storage systems [1]. Ensuring their safe, reliable, and efficient operation hinges on 
sophisticated Battery Management Systems (BMS) [2, 3]. A BMS performs critical functions, including monitoring 
battery states, ensuring operation within safe limits, optimizing performance, and prolonging lifespan [2]. 

Driven by the increasing complexity of battery systems and the availability of large datasets, Artificial Intelligence (AI) 
and Machine Learning (ML) techniques have been increasingly integrated into BMS functionalities [4]. ML models have 
demonstrated remarkable success in tasks such as estimating State of Charge (SOC), State of Health (SOH), Remaining 
Useful Life (RUL) [5, 6], and detecting and diagnosing various fault conditions [7, 8], often surpassing traditional 
methods in accuracy. 

However, many high-performing AI/ML models, particularly deep learning architectures, operate as "black boxes," 
providing predictions without clear explanations of their reasoning [9]. This lack of transparency poses significant 
challenges in safety-critical applications like BMS. Operators and engineers may hesitate to trust or act upon predictions 
without understanding their basis [10], potentially hindering the adoption of advanced AI solutions. Furthermore, 
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understanding why a model makes a certain prediction is crucial for debugging, validation, and identifying potential 
biases or reliance on spurious correlations. 

Explainable Artificial Intelligence (XAI) has emerged as a vital field to address this opacity [11]. XAI encompasses a 
range of techniques designed to make AI/ML model decisions understandable to humans. By providing insights into 
model behavior—such as identifying influential input features or visualizing decision boundaries—XAI aims to foster 
trust, enhance safety, and facilitate human-AI collaboration [11, 12]. 

While previous reviews have focused on ML in BMS [4] or XAI for specific tasks like fault diagnosis [13], a comprehensive 
overview of XAI applications across the breadth of BMS functions is still needed. This review aims to fill that gap by 
systematically surveying the state-of-the-art literature on XAI techniques applied to various core BMS tasks. We will 
discuss the methodologies employed, summarize key findings, identify common challenges, and outline future research 
trajectories. This paper intends to provide researchers and practitioners with a holistic understanding of how XAI is 
being used and can be further leveraged to create more intelligent, reliable, and trustworthy BMS. 

The remainder of this paper is organized as follows: Section 2 briefly outlines key BMS tasks. Section 3 discusses the 
general application of AI/ML in BMS. Section 4 introduces relevant XAI techniques. Section 5 reviews XAI applications 
in specific BMS tasks. Section 6 discusses challenges and open issues. Section 7 suggests future research directions, and 
Section 8 concludes the paper. 

2 Overview of Battery Management System Tasks 

An effective BMS performs several critical functions to ensure battery safety, performance, and longevity [2, 3]. Table 
1 provides a summary of these core tasks, which are further elaborated below. 

Table 1 Core Functions of a Battery Management System (BMS) 

Task Name Primary Purpose/Goal 

State Estimation Estimate internal states (SOC, SOH, RUL) that cannot be directly measured. 

State of Charge (SOC) Determine remaining battery capacity (fuel gauge). 

State of Health (SOH) Assess current condition relative to new (degradation level). 

Remaining Useful Life (RUL) Predict time/cycles until end-of-life. 

Fault Detection & Diagnosis 
(FDD) 

Identify occurrence, type, and location of faults to ensure safety and prevent 
hazardous events. 

Charging Management Optimize charging process for speed, safety, and minimal degradation. 

Cell Balancing Equalize charge among cells in a pack to maximize usable capacity and prevent cell 
stress. 

Thermal Management Monitor and control battery temperature to maintain optimal operating range for 
performance and safety. 

• State Estimation: This involves accurately estimating internal battery states that cannot be directly measured. 
Key states include: 

o State of Charge (SOC): Represents the available capacity relative to the maximum, akin to a fuel gauge, 
crucial for range prediction and operational planning. 

o State of Health (SOH): Assesses the battery's current condition compared to its fresh state, typically 
reflecting capacity fade and impedance increase, which informs maintenance and replacement 
decisions. 

o Remaining Useful Life (RUL): Predicts the time or number of cycles remaining until the battery reaches 
its end-of-life criteria, essential for warranty and operational planning. Accurate estimation of these 
states is challenging due to complex electrochemical processes and varying operating conditions. 

• Fault Detection and Diagnosis (FDD): This function is paramount for safety. It involves identifying the 
occurrence, type (e.g., internal short circuit, overcharge, sensor malfunction), and sometimes location of faults 
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within the battery pack to enable timely intervention and prevent potentially hazardous events like thermal 
runaway. 

• Charging Management: This task focuses on optimizing the charging process. It aims to balance rapid charging 
with minimizing battery degradation and ensuring safety by controlling charging current, voltage, and 
temperature according to the battery's state and limits. 

• Cell Balancing: In multi-cell packs, individual cell capacities and resistances inevitably diverge. Cell balancing 
aims to equalize the SOC across cells, either passively (dissipating energy from higher-charged cells) or actively 
(transferring energy between cells), thereby maximizing the usable pack capacity and preventing premature 
aging of individual cells. 

• Thermal Management: Maintaining the battery within its optimal temperature range is critical for both 
performance and safety. This involves monitoring cell temperatures and controlling heating or cooling systems 
(e.g., fans, liquid cooling) to mitigate overheating during high power operation or underheating in cold 
conditions. 

3 AI/ML Applications in BMS 

While traditional BMS often rely on model-based approaches (e.g., equivalent circuit models, Kalman filters) which 
provide physical interpretability but can struggle with accuracy under diverse conditions [14], AI/ML techniques have 
emerged as powerful data-driven alternatives [4]. These methods learn complex patterns and non-linear relationships 
directly from sensor data (voltage, current, temperature, etc.), often leading to improved performance in various BMS 
tasks, as summarized in Table 2. 

Table 2 Examples of AI/ML Techniques Applied to BMS Tasks 

BMS Task Common AI/ML Techniques Used Example Application/Goal 

State Estimation 
(SOC/SOH/RUL) 

RNNs (LSTM, GRU), SVM, GPR, Ensemble 
Methods 

Estimate internal states accurately 
under dynamic conditions. 

Fault Detection & 
Diagnosis (FDD) 

Classifiers (SVM, RF, CNN), Anomaly Detection 
(Autoencoders, OC-SVM) 

Identify known fault types or detect 
unexpected deviations. 

Charging Management Reinforcement Learning (RL), Optimization 
Algos. 

Learn optimal charging policies 
balancing speed vs. health. 

Cell Balancing ML Classifiers/Regressors Predict optimal balancing currents or 
control strategies. 

Thermal Management Regression Models (NNs, GPR), Control 
Algorithms 

Predict temperature distribution, 
optimize cooling/heating. 

• State Estimation (SOC, SOH, RUL): AI/ML models excel at mapping the complex, non-linear relationships 
between measurable signals (like voltage curves during operation) and internal battery states. Techniques 
adept at handling time-series data, such as Recurrent Neural Networks (RNNs, including LSTMs and GRUs), are 
widely employed. Support Vector Machines (SVM), Gaussian Process Regression (GPR), and various ensemble 
methods are also frequently used to estimate SOC, SOH, and RUL, often achieving higher accuracy compared to 
traditional methods, especially under dynamic operating profiles and when accounting for complex aging 
effects [5, 6]. Their strength lies in capturing subtle degradation indicators from operational data that are 
challenging to represent with purely physics-based models. 

• Fault Detection and Diagnosis (FDD): The ability of AI/ML to recognize intricate patterns in high-
dimensional data makes it particularly well-suited for FDD. For identifying known fault types, supervised 
learning models like SVM, Random Forests (RFs), and Convolutional Neural Networks (CNNs) – which can 
effectively process spatial or temporal patterns in sensor readings – are trained to classify faults based on their 
unique signatures [7, 8, 15]. Furthermore, unsupervised learning methods, especially anomaly detection 
algorithms like One-Class SVM or Autoencoders [29], offer a valuable approach for detecting unexpected 
deviations from normal operational behavior, potentially identifying novel or incipient fault conditions without 
requiring pre-labeled fault data. 

• Charging Management: Optimizing the charging process involves a complex trade-off between charging 
speed, efficiency, safety, and minimizing long-term battery degradation. Reinforcement Learning (RL) stands 
out as a promising approach, allowing agents to learn optimal, state-dependent charging policies through 
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interaction with the battery (or a model of it), potentially outperforming predefined charging protocols, 
especially in adapting to varying conditions or battery health. Other ML techniques, such as regression models, 
might also assist in predicting optimal charging parameters or end-of-charge points. 

• Cell Balancing and Thermal Management: While perhaps less extensively covered in broad AI/BMS reviews 
compared to state estimation and FDD, ML techniques offer potential improvements in these areas as well. ML 
models can be applied to optimize cell balancing strategies, for instance, by predicting the optimal balancing 
currents based on cell states [22 - Verify XAI relevance or note as future work area]. Similarly, for thermal 
management, ML can enhance performance by enabling more accurate prediction of internal temperature 
distributions based on limited sensor data or by learning optimal control strategies for cooling/heating systems 
directly from operational data [30]. 

Despite these performance advantages and diverse applications, the inherent complexity of many high-performing 
AI/ML models often results in a lack of transparency ('black-box' behavior), making it difficult to trust their outputs in 
safety-critical scenarios. This crucial limitation directly motivates the integration and study of Explainable AI (XAI) 
techniques within BMS, which will be discussed further in subsequent sections. 

4 Explainable AI (XAI) Techniques Relevant to BMS 

A diverse array of XAI techniques exists, aiming to provide insights into complex AI/ML models used in BMS [11, 12]. 
These methods vary in their scope (local vs. global), applicability (model-agnostic vs. model-specific), and the type of 
explanation they provide. Selecting the appropriate technique depends on the specific BMS task, the underlying AI/ML 
model, the type of data, and the target audience for the explanation. Table 3 summarizes key XAI techniques relevant 
to BMS applications, which are discussed in more detail below. 

Table 3 Overview of XAI Techniques Applicable to BMS 

Category Specific 
Method 

Scope Output Type Key Strength Key Weakness / BMS 
Consideration 

Refs 

Model-
Agnostic Local 

LIME Local Feature importance 
scores (for one 
prediction) 

Intuitive, easy to 
apply to any model 

Explanation instability, 
local fidelity only 

[16] 

SHAP Local/ 
Global 

Feature attributions 
(Shapley values) 

Theoretically 
grounded, 
consistent, provides 
global summary 

Computationally 
expensive, feature 
independence 
assumption 

[17] 

Model-
Agnostic 
Global 

Permutation 
Feature 
Importance 

Global Feature importance 
scores (model-wide) 

Simple concept, 
widely applicable 

Can be misleading with 
correlated features, 
costly 

 

PDP / ALE Global Plots showing feature 
effect on prediction 

Visualizes feature 
impact 

Max 1-2 features, 
assumes independence 
(PDP) 

 

Model-Specific Attention 
Mechanisms 

Local/ 
Global 

Attention 
weights/maps 

Built-in 
interpretability for 
sequence models 

Correlation, not 
causation; interpretation 
can be tricky 

[18] 

Integrated 
Gradients / LRP 

Local Feature/Input 
attribution scores 

Applicable to deep 
networks 

Requires model 
internals, gradient issues 
possible 

 

Inherently 
Interpretable 

Linear/Logistic 
Regression 

Global Coefficients, p-values Simple, easy to 
understand 

May underfit complex 
battery dynamics 

[9] 

Decision Trees 
/ Rule Lists 

Global Rules, Tree structure Explicit logic, 
human-readable 

Can become complex, 
prone to overfitting 

[9] 
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4.1 Model-Agnostic Methods 

These methods treat the AI/ML model as a black box and can be applied to any model type, which is advantageous given 
the variety of models used in BMS. 

• LIME (Local Interpretable Model-agnostic Explanations): LIME explains an individual prediction by 
learning a simple, interpretable model (e.g., linear regression) in the local neighborhood of the instance being 
explained [16]. It works by generating perturbations (small variations) of the input instance, obtaining the 
black-box model's predictions for these perturbations, and then fitting a weighted, interpretable model to this 
local data. The coefficients or rules of this local model serve as the explanation, indicating the importance of 
each feature for that specific prediction. Strength: Its intuition and applicability to virtually any ML model make 
it a popular starting point for interpretability. Weakness/BMS Consideration: Explanations primarily offer local 
fidelity and might not represent the model's global behavior accurately. The definition of the 'neighborhood' 
and the perturbation strategy can significantly affect the explanation's stability. Applying LIME effectively to 
time-series data, common in BMS, requires careful consideration of how to generate meaningful temporal 
perturbations. 

• SHAP (SHapley Additive exPlanations): Based on cooperative game theory concepts, SHAP assigns a unique 
contribution value (Shapley value) to each feature for a specific prediction, ensuring properties like local 
accuracy and consistency [17]. It calculates the marginal contribution of a feature by considering its effect 
across all possible combinations of other features. SHAP provides rich local explanations (e.g., force plots 
visualizing contributions) and powerful global explanations by aggregating Shapley values across many 
instances (e.g., summary plots showing overall feature importance and impact direction). Strength: Offers a 
strong theoretical foundation based on Shapley values, providing consistent and reliable local and global 
explanations. Weakness/BMS Consideration: The main drawback is its computational expense, which can be 
significant for models with many input features (common in BMS with multiple sensors and time steps) or 
complex internal structures. While model-agnostic in principle, efficient implementations often exist for 
specific model types (e.g., TreeSHAP). Additionally, interpreting SHAP values requires understanding the 
concept of feature contributions relative to a baseline expectation. Some SHAP implementations might assume 
feature independence, which needs careful consideration for potentially correlated battery sensor data. 

• Global Methods (Feature Importance, PDP/ALE): Beyond SHAP's global summary, other methods provide 
global insights. Permutation Feature Importance measures a feature's overall importance by quantifying the 
drop in model performance when that feature's values are randomly shuffled across the dataset. Partial 
Dependence Plots (PDP) and Accumulated Local Effects (ALE) plots aim to visualize the average marginal effect 
of one or two features on the model's predictions. Strength: These methods offer a high-level overview of which 
features matter most globally or how features generally influence predictions. Weakness/BMS Consideration: 
Permutation importance can be misleading for highly correlated features. PDP assumes feature independence, 
while ALE attempts to address this but is more complex. Both PDP and ALE are typically limited to visualizing 
the effects of only one or two features at a time. 

4.2 Model-Specific Methods 

These methods are designed for particular classes of models, often leveraging their internal architecture. 

• Attention Mechanisms: Widely used in sequence models like Transformers and some RNN variants (e.g., 
LSTM with attention), attention layers learn to dynamically weight different parts of the input sequence (e.g., 
specific time steps or sensor channels) when generating an output [18]. These learned attention weights can 
be visualized (e.g., as heatmaps) to infer which input segments the model considered most important for its 
prediction. Strength: Provides interpretability directly integrated within the model architecture, naturally 
suited for time-series data prevalent in BMS state estimation and RUL prediction. Weakness/BMS Consideration: 
Attention weights highlight model focus or correlation, but do not necessarily equate to causal feature 
importance. Interpreting complex, multi-head attention patterns can still be non-trivial. 

• Gradient-based / Propagation-based Methods: Techniques like Integrated Gradients, DeepLIFT, or Layer-
Wise Relevance Propagation (LRP) are primarily used for deep neural networks. They work by back-
propagating gradients or relevance scores from the output layer back to the input features, thereby attributing 
the prediction to specific input elements. Strength: Can provide fine-grained, pixel-level, or input-element-level 
attributions for deep learning models. Weakness/BMS Consideration: These methods require access to the 
model's internal structure and gradients. They can sometimes be sensitive to implementation choices, and their 
theoretical underpinnings or interpretation can be complex (e.g., handling gradient saturation). 
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4.3 Inherently Interpretable Models 

This approach prioritizes transparency by using models whose decision-making process is directly understandable, 
rather than explaining a complex black box post-hoc [9]. 

• Linear Models / GAMs: Linear and logistic regression models offer straightforward interpretability through 
their coefficients, which directly indicate the weight and direction of each feature's influence. Generalized 
Additive Models (GAMs) extend this by allowing non-linear relationships for individual features while 
maintaining additivity, offering a balance between flexibility and interpretability. Strength: Simple, transparent, 
well-understood relationship between inputs and outputs. Weakness/BMS Consideration: Their inherent 
linearity or additivity might limit their ability to capture the highly complex, non-linear, and interactive 
dynamics often governing battery behavior and degradation, potentially leading to lower predictive accuracy 
compared to more complex models. 

• Decision Trees / Rule Lists: These models make predictions using an explicit set of hierarchical rules (trees) 
or a list of rules. The path leading to any prediction can be easily followed and understood. Strength: Provide 
highly transparent, human-readable logic. Weakness/BMS Consideration: Single decision trees can be unstable 
(small data changes can lead to different trees) and prone to overfitting complex datasets. While ensemble 
methods like Random Forests or Gradient Boosted Trees significantly improve predictive performance, they 
sacrifice the inherent interpretability of single trees, often requiring model-agnostic XAI techniques like SHAP 
for explanation. 

The selection of an XAI technique for a specific BMS application should carefully consider the trade-offs between the 
desired level and type of explanation, the complexity of the underlying AI/ML model, the nature of the battery data, 
computational constraints (especially for on-board BMS), and the needs of the end-user interpreting the explanation. 
Often, employing a combination of different XAI techniques can provide a more robust and multifaceted understanding 
of the AI/ML model's behavior. 

5 XAI Applications in Specific BMS Tasks 

Having outlined the key BMS tasks and relevant XAI techniques, this section reviews how XAI has been specifically applied 
in the literature to interpret AI/ML models across different BMS functions. The goal is to understand the types of insights 
gained and the common practices in the field. Table 4 provides a high-level summary of reported XAI applications and 
findings for core BMS tasks, based on the reviewed literature. The subsequent subsections elaborate on these applications.  

Table 4 Summary of XAI Applications and Findings in BMS Tasks (Illustrative based on Literature) 

BMS Task Common AI/ML 
Models Used 
(Examples) 

Applied XAI 
Techniques 
(Examples) 

Key Insights/Findings from XAI (Examples from 
Literature) 

State Estimation 
(SOC) 

NN, LSTM, GPR LIME, SHAP, Feature 
Importance 

Identification of key input features (voltage, 
current, temp.) under different conditions; 
Understanding model reliance shifts. 

State Estimation 
(SOH) 

LSTM, GPR, Ensemble SHAP, Feature 
Importance, LIME 

Highlighting influential features (e.g., voltage curve 
shapes, ICA peaks, impedance); Understanding 
feature interactions for degradation. 

State Estimation 
(RUL) 

LSTM, Transformer, 
CNN 

Attention 
Mechanisms, SHAP 

Identifying critical historical cycles or stress events 
influencing prediction; Temporal focus of the 
model. 

Fault Detection 
& Diagnosis 
(FDD) 

CNN, RF, SVM, 
Autoencoders 

SHAP, LIME, Decision 
Trees 

Pinpointing specific sensor readings (voltage drops, 
temp spikes) indicative of faults; Revealing model 
decision rules; Anomaly explanation. 

Charging 
Management 

RL, Optimization Algos. SHAP (on 
policy/value nets), 
Feature Importance 

Understanding trade-offs learned by RL agents 
(speed vs. health); Identifying factors influencing 
optimal charging decisions. (Less common) 
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Cell Balancing ML 
Classifiers/Regressors 

Feature Importance Determining factors influencing optimal balancing 
current prediction. (Less common) 

5.1 XAI for State Estimation (SOC, SOH, RUL) 

Explainable AI techniques are increasingly applied to demystify the complex AI/ML models used for estimating critical 
battery states, thereby enhancing trust and providing deeper insights into battery behavior. The literature reveals 
several common approaches and findings: 

• State of Health (SOH) Estimation: Understanding SOH is vital for assessing battery degradation. Studies 
applying XAI often focus on identifying which input features, derived from voltage, current, and temperature 
profiles during operation or specific tests (like charging), are most indicative of capacity fade or impedance 
increase according to the ML model. For instance, Li et al. [26] used SHAP with an LSTM network, 
demonstrating how features from the charging voltage plateau and their interactions significantly influenced 
SOH predictions. Such analyses help validate if the model learns physically meaningful degradation indicators 
and understand the relative importance of different operational phases or derived health features. 

• State of Charge (SOC) Estimation: For SOC estimation, especially under dynamic conditions where traditional 
methods struggle, XAI helps understand how ML models adapt. Techniques like LIME can provide instance-
specific explanations, revealing how a model might dynamically shift its reliance between voltage-based 
estimation and current integration depending on factors like temperature or recent load history, as exemplified 
by Wang et al. [27] using LIME with a neural network. This offers transparency into the model's adaptive 
behavior in specific, potentially challenging, operational moments, building confidence in its robustness. 

• Remaining Useful Life (RUL) Prediction: Predicting RUL inherently involves long-term dependencies. XAI 
methods, particularly attention mechanisms integrated within sequence models like LSTMs or Transformers, 
are valuable here. They allow researchers to visualize which parts of the battery's historical usage data the 
model focused on most when making its RUL prediction. Ren et al. [28] utilized attention in a Transformer 
network to effectively highlight specific cycles or stress events (e.g., high C-rate periods) that heavily influenced 
the end-of-life forecast, linking past usage to predicted lifespan and potentially informing usage 
recommendations for extending life. 

Overall, applying XAI to state estimation models allows researchers to move beyond accuracy metrics, validate model 
reasoning against domain expertise, and potentially discover new indicators of battery state and health learned 
implicitly by the models. This fosters greater understanding and trust in these critical estimations. 

5.2 XAI for Fault Detection and Diagnosis (FDD) 

Given the safety-critical nature of fault detection, XAI plays a crucial role in validating and trusting FDD models. Key 
applications synthesized from the literature include: 

• Identifying Fault Indicators: Post-hoc methods like SHAP are frequently used to determine which specific 
sensor readings or derived features contribute most to a fault classification made by models like CNNs or 
Random Forests. Studies often confirm that XAI highlights expected physical indicators, such as significant 
voltage drops, rapid temperature increases, or deviations in cell-to-cell consistency for faults like internal short 
circuits [19]. This helps confirm the model is learning relevant physics. 

• Understanding Model Logic: Inherently interpretable models, such as Decision Trees or rule-based systems, 
provide explicit diagnostic rules that can be directly examined and compared with engineering knowledge or 
established diagnostic procedures [20]. This offers a high degree of transparency, although potentially at the 
cost of some predictive performance compared to complex models. 

• Explaining Anomaly Detection: For unsupervised anomaly detection models used to flag unexpected 
behavior or sensor faults [29], XAI techniques like LIME [16] or SHAP [17] can be applied (sometimes with 
modifications) to attempt explaining why a particular data point was flagged as anomalous, potentially pointing 
towards the specific deviating sensor or unusual pattern, aiding in root cause analysis. Comparing explanations 
from different methods [Discussion needed based on literature] can also help assess the robustness of the 
findings for unexpected events. 

Synthesizing findings from various studies [7, 8, 15, 19, 20, and others] reveals that XAI significantly aids in verifying 
that FDD models are learning correct fault signatures and provides valuable diagnostic insights beyond a simple fault 
flag, increasing confidence in automated diagnostic systems. 



International Journal of Science and Technology Research Archive, 2025, 08(02), 014-026 

21 

5.3 XAI for Charging Management & Other Tasks 

The application of XAI to other BMS tasks like charging optimization and cell balancing is currently less mature but 
holds significant potential for improving transparency and user acceptance: 

• Charging Management: As RL agents are developed to find optimal charging strategies that balance speed and 
battery health [21 - Verify XAI relevance...], XAI techniques (e.g., applying SHAP to the RL policy or value 
network) could be used to understand the complex trade-offs learned by the agent (e.g., why it reduces current 
at a certain SOC or temperature) and the factors driving its charging decisions under different states. This could 
lead to more trustworthy adaptive charging systems that users understand and accept. 

• Cell Balancing: For ML models predicting optimal balancing currents or control actions [22 - Verify XAI 
relevance...], feature importance analysis could reveal the key cell parameters (voltage, temperature, estimated 
resistance) influencing the balancing decisions, helping to validate and potentially refine the balancing strategy. 

While dedicated XAI studies in these specific areas are still emerging, the principles applied in state estimation and FDD 
are transferable. Future work will likely see increased use of XAI to interpret complex control strategies learned by AI 
for charging, balancing, and thermal management, making these optimizations more transparent and reliable. 

6 Challenges and Open Issues for XAI in BMS 

Despite the growing interest and potential benefits, the practical deployment and widespread adoption of XAI 
techniques in real-world BMS face several significant challenges and open research questions [11, 13]. These hurdles 
need to be addressed to fully realize trustworthy and effective explainable battery management. Table 5 summarizes 
the key challenges discussed in this section. 

Table 5 Major Challenges and Open Issues for XAI in BMS Applications 

Challenge Area Description Key Implications for BMS Potential Mitigation 
Strategies 

Real-time 
Constraints 

High computational cost of 
many XAI methods (e.g., SHAP 
sampling). 

Difficulty in generating on-the-
fly explanations on resource-
limited BMS hardware. 

Lightweight XAI, approximate 
methods, hardware 
acceleration, offline analysis. 

Data Scarcity 
and Quality 

Lack of diverse, labelled, high-
quality fault and degradation 
data. 

Explanations may be 
unreliable, overfit to limited 
data, or fail on unseen 
scenarios. 

Data augmentation 
(Generative AI), transfer 
learning, physics-informed 
methods. 

Evaluation of 
Explanations 

Difficulty in objectively 
measuring explanation 
quality (fidelity, robustness, 
utility). 

Hard to validate explanation 
correctness and ensure 
reliability for critical decisions. 

Domain-specific metrics, user 
studies, counterfactual 
evaluation, benchmarking. 

Human 
Interpretation & 
Usability 

Explanations may be complex 
or not tailored to the end-
user's needs/expertise. 

Risk of misinterpretation, over-
trust, or under-trust; lack of 
actionable insights. 

Human-centered XAI design, 
adaptive explanations, user 
training, clear visualization. 

Fidelity vs. 
Performance 
Trade-off 

Post-hoc explanations might 
not perfectly reflect complex 
model reasoning; 
interpretable models might 
lack accuracy. 

Dilemma between using high-
performing black boxes vs. 
transparent but potentially 
simpler models. 

Hybrid approaches, research 
into high-fidelity 
explanations, risk 
assessment. 

Standardization 
& Regulation 

Lack of standard formats, 
protocols, and regulatory 
guidelines for XAI in BMS. 

Difficulty in comparing 
methods, ensuring consistency, 
and certifying XAI for safety 
use. 

Development of BMS-specific 
XAI standards, collaboration 
with regulatory bodies. 
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6.1 Real-time Constraints and Computational Cost 

Many powerful XAI methods, particularly model-agnostic techniques like SHAP that rely on extensive sampling or 
perturbation, entail significant computational overhead [23]. Generating explanations for complex models operating on 
high-frequency sensor data can be time-consuming, often taking seconds or even minutes per explanation depending 
on the method, model complexity, and data dimensionality. This poses a major challenge for on-board BMS applications, 
which typically run on resource-constrained microcontrollers with limited processing power (MHz range) and memory 
(KB or MB range). Generating real-time, on-the-fly explanations needed for immediate diagnostic alerts or adaptive 
control adjustments is often infeasible with current sophisticated XAI methods. Therefore, significant research is 
needed into developing lightweight XAI algorithms specifically designed for embedded systems, computationally 
cheaper approximation techniques (e.g., optimized or selective SHAP variants), strategies for offline explanation 
generation targeting common scenarios, or exploring hardware-software co-design involving dedicated accelerators for 
XAI computations within the BMS architecture [See Section 7]. 

6.2 Data Scarcity and Quality 

The performance and reliability of both the underlying AI/ML model and the XAI technique applied to it heavily depend 
on the quality, quantity, and diversity of the training data [10, 13]. As previously noted, obtaining comprehensive, 
accurately labeled datasets covering various battery chemistries, form factors, operating conditions (temperature, load 
profiles), fault types (including incipient and combined faults), and degradation stages is extremely challenging in the 
battery domain. Models trained on limited or biased data may learn spurious correlations or fail to generalize to unseen 
conditions. Consequently, XAI methods applied to such models might highlight irrelevant features, provide misleading 
explanations, or generate explanations that are not robust when applied to slightly different operational scenarios. 
Explanations derived from models trained primarily on lab data might not hold true in real-world applications with 
different noise levels and unmodeled dynamics. Strategies like generative AI for data augmentation, transfer learning 
from simulation to reality or across different battery types, and incorporating physics-based constraints into both the 
ML model and the XAI process are potential avenues to mitigate these data limitations, but require further research and 
validation. 

6.3 Evaluation of Explanations 

Evaluating the 'goodness' or 'quality' of an explanation generated by an XAI method is notoriously difficult and remains 
a significant open research area [24]. Unlike standard ML model evaluation based on predictive accuracy metrics (e.g., 
accuracy, F1-score), there is often no objective "ground truth" against which to compare an explanation. Key facets of 
explanation quality need consideration: 

• Fidelity: How accurately does the explanation reflect the model's actual internal reasoning or decision 
boundary? A persuasive explanation might not be faithful to the model. 

• Robustness: How stable is the explanation? Small, insignificant perturbations to the input should ideally not 
lead to drastically different explanations [23]. 

• Understandability/Interpretability: Is the explanation clear, concise, and easily comprehensible to the intended 
human user? 

• Usefulness/Actionability: Does the explanation help the user achieve a specific goal, such as debugging the 
model, making a decision, or learning about the domain? Developing quantitative metrics and standardized 
benchmarks specifically for evaluating XAI methods in the context of BMS tasks is crucial. This could involve 
assessing alignment with known battery physics, comparing explanations to expert knowledge, conducting 
user studies to measure understandability and usefulness, or using counterfactual analysis to test explanation 
validity. 

6.4 Human Interpretation and Usability 

Ultimately, the value of an explanation lies in its correct interpretation and effective use by a human [25]. The target 
users of XAI in BMS can range from battery researchers and design engineers to field technicians, vehicle operators, or 
even fleet managers, each with different levels of expertise and different information needs. Explanations generated by 
XAI algorithms, such as high-dimensional SHAP value plots or complex decision tree structures, may not be inherently 
understandable to all users. Presenting explanations in a format tailored to the user's background and the specific task 
context is critical for effective communication. Furthermore, human cognitive biases can influence how explanations 
are perceived, potentially leading to over-trust in plausible but incorrect explanations or under-trust due to information 
overload or lack of clarity. Research in human-centered XAI, focusing on user studies within the BMS domain, developing 
adaptive and context-aware explanation interfaces, and designing effective visualizations, is essential to ensure that XAI 
outputs translate into genuinely improved understanding and decision-making. 
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6.5 Fidelity vs. Performance Trade-off 

An ongoing debate in the XAI community revolves around the choice between explaining complex, high-performance 
black-box models post-hoc versus using inherently interpretable models from the outset [9]. Post-hoc explanations (like 
LIME, SHAP) aim to approximate the reasoning of potentially very accurate but opaque models. However, there is a risk 
that the explanation itself might lack perfect fidelity – it might be a plausible simplification that doesn't fully capture the 
true, complex internal logic of the black box, especially regarding feature interactions. Misleading explanations, even 
for accurate models, can be detrimental in safety-critical systems. Conversely, inherently interpretable models (like 
linear models, GAMs, simple decision trees) offer complete transparency, but their simpler structure may limit their 
predictive power on complex, non-linear BMS tasks, potentially sacrificing accuracy. Navigating this trade-off requires 
careful consideration of the specific application's requirements for both performance and trustworthiness. Hybrid 
approaches combining model-based insights with interpretable ML, or research into verifying the fidelity of post-hoc 
explanations, are important directions. 

6.6 Standardization and Regulation 

The field of XAI, particularly its application in specific domains like BMS, currently lacks widely accepted standards. 
There is a need for standardization in several areas: terminology, methodologies for generating explanations, formats 
for presenting explanations, and protocols for evaluating explanation quality. Such standards would facilitate better 
comparison between different XAI techniques and promote consistency and reproducibility in research and 
development. Furthermore, as AI/ML systems become more integrated into safety-critical automotive and energy 
storage applications, regulatory bodies may start requiring evidence of system transparency and reliability, potentially 
including specific requirements for the explainability of AI components within certified BMS. Establishing clear industry 
guidelines and potentially certification processes for XAI in battery management will be an important factor for building 
public trust and enabling widespread, responsible adoption. 

Addressing these multifaceted challenges is paramount for transitioning XAI in BMS from a promising research area to 
a set of reliable, practical tools deployed in real-world battery systems. 

7 Future Research Directions 

Addressing the challenges outlined in the previous section requires concerted research efforts across multiple fronts. 
Based on the current state-of-the-art and identified gaps, several promising future research directions emerge for 
advancing the field of XAI in BMS: 

• Lightweight and Real-time XAI Algorithms: Given the strict computational constraints of on-board BMS 
hardware, a critical need exists for developing XAI techniques that are significantly more efficient than current 
methods like full SHAP. Research should focus on lightweight algorithms specifically designed for embedded 
systems, computationally cheaper approximation strategies (e.g., efficient sampling for SHAP, simplified LIME 
variants), model distillation techniques applied to explanations (training a simpler model to mimic the complex 
model's explanations), and methods tailored for edge computing environments. The goal is to enable near real-
time explanation generation without compromising the BMS's primary control functions, potentially allowing 
for adaptive control based on explained predictions. 

• Physics-Informed Explainable AI (PIXAI): Integrating domain knowledge from battery electrochemistry and 
physics can significantly enhance the reliability and meaningfulness of XAI explanations. Future work should 
explore PIXAI approaches where physical laws (e.g., conservation laws, thermodynamic principles), known 
constraints (e.g., voltage bounds, monotonic degradation trends), or simplified physical models (e.g., equivalent 
circuit parameters) are incorporated into the AI/ML model training process (as regularizers or hybrid 
architectures) or directly into the XAI method itself (e.g., constraining explanations to be physically plausible). 
This could lead to explanations that are not only data-driven but also physically consistent and robust, 
preventing spurious correlations and improving trust, especially when data is scarce. 

• XAI with Limited and Imbalanced Data: The persistent challenge of data scarcity, particularly for rare faults 
or specific operating corners, necessitates research into XAI methods that perform reliably in low-data regimes. 
This includes exploring how generative models can be used not just for data augmentation to improve model 
accuracy, but specifically for generating diverse scenarios that enhance explanation robustness. Furthermore, 
applying techniques like transfer learning (leveraging knowledge from simulations, different battery 
chemistries, or related domains), few-shot learning, and meta-learning in the context of explainable battery 
models warrants investigation. The aim is to generate reliable explanations even for rare events or newly 
deployed battery technologies where extensive historical data is unavailable. 
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• Quantitative and Domain-Specific Evaluation Metrics: Moving beyond qualitative assessments requires the 
development of objective, quantitative metrics tailored for evaluating XAI methods within the specific context 
of BMS. Research is needed to define and validate metrics that measure different facets of explanation quality, 
such as fidelity (how well the explanation reflects the model's behavior), robustness (stability against minor 
input changes), understandability (measured via user studies), and task-based utility (how much the 
explanation improves human performance on a relevant task, like fault diagnosis). These metrics could involve 
comparing XAI outputs against physics-based simulations, checking consistency with known degradation 
mechanisms, or assessing alignment with expert judgments encoded in knowledge graphs. Establishing 
benchmark datasets and standardized evaluation protocols is also crucial for objective comparison of different 
XAI techniques. 

• Human-Centered XAI for BMS Stakeholders: Explanations are ultimately consumed by humans, whose 
background and needs vary widely. Future research must adopt a human-centered design approach. This 
involves identifying the specific explanatory needs of different BMS stakeholders (e.g., design engineers 
requiring deep model insights vs. field technicians needing quick diagnostic pointers vs. EV drivers needing 
understandable safety alerts). User studies are needed to evaluate the effectiveness of different explanation 
formats (e.g., feature attributions, rules, counterfactuals, visualizations) for different users and tasks. 
Developing adaptive interfaces that tailor the complexity and format of explanations based on the user and 
context, and studying how to effectively calibrate user trust through explanations, are key areas for 
investigation [25, 31]. 

• Hardware-Software Co-design for Efficient XAI: Enabling real-time XAI on resource-constrained BMS 
platforms may necessitate synergistic hardware and software optimization. Research into hardware-software 
co-design could explore developing specialized hardware accelerators (e.g., using FPGAs, ASICs, or 
neuromorphic chips) optimized for common XAI computations (like perturbation-based methods or gradient 
calculations). Simultaneously, software optimizations, including applying model compression techniques (like 
quantization and pruning) not just to the primary ML model but also to the explanation generation process 
itself, could significantly reduce computational demands. 

• Standardization and Regulatory Frameworks: As AI/XAI becomes more integral to safety-critical systems 
like automotive BMS or grid energy storage, establishing industry standards and clear regulatory guidelines 
will be essential for ensuring safe and responsible deployment. Future efforts should involve collaboration 
between researchers, battery manufacturers, automotive OEMs, energy companies, standards organizations 
(like ISO, IEC, SAE), and regulatory bodies. This collaboration is needed to develop standardized terminology, 
common formats for reporting XAI results, protocols for validating the performance and reliability of 
explainable systems, and potentially certification requirements for AI/XAI components used in safety-critical 
BMS applications. 

These research directions are often interconnected and highlight the need for interdisciplinary collaboration between 
AI/ML experts, battery scientists and engineers, control systems engineers, hardware designers, human-computer 
interaction researchers, and policymakers to achieve truly trustworthy, effective, and widely adopted explainable 
battery management systems.  

8 Conclusion 

The integration of Artificial Intelligence and Machine Learning has undeniably advanced the capabilities of Battery 
Management Systems, offering enhanced performance in critical tasks such as state estimation and fault diagnosis. 
However, the prevalent use of complex, opaque models introduces significant concerns regarding trustworthiness, 
reliability, and safety, particularly given the safety-critical nature of battery applications in electric vehicles and large-
scale energy storage. Explainable AI (XAI) emerges as a crucial enabler to bridge this gap, providing the necessary tools 
and methodologies to foster transparency and understanding in intelligent BMS. 

This paper has provided a comprehensive review of the current landscape of XAI applications within the domain of BMS. 
We surveyed the state-of-the-art literature, examining how various XAI techniques – including model-agnostic methods 
like LIME and SHAP, model-specific approaches like attention mechanisms, and inherently interpretable models – are 
being employed across core BMS functions. Our review highlighted that XAI is increasingly utilized not only for fault 
diagnosis, where it helps identify key fault indicators and validate model reasoning, but also for state estimation (SOC, 
SOH, RUL), offering deeper insights into the factors driving battery degradation and state changes as learned by AI/ML 
models. Early applications in charging management and other areas also show promise. 
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Despite these advancements, significant challenges impede the widespread practical deployment of XAI in BMS. As 
discussed, these include the computational demands of many XAI methods conflicting with real-time BMS constraints, 
the scarcity of diverse and high-quality battery data impacting explanation reliability, the inherent difficulty in 
objectively evaluating explanation quality, ensuring human interpretability for various stakeholders, navigating the 
trade-off between model performance and interpretability, and the lack of standardization and regulatory frameworks. 

Addressing these challenges through dedicated research, as outlined in the future directions – including developing 
lightweight and physics-informed XAI, establishing robust evaluation metrics, adopting human-centered design 
principles, pursuing hardware-software co-design, and fostering standardization – is paramount. Continued 
interdisciplinary collaboration will be key to advancing this field. 

In conclusion, Explainable AI is poised to play an indispensable role in the future of battery management. By rendering 
complex AI/ML models transparent and interpretable, XAI not only enhances trust and facilitates debugging but also 
unlocks deeper understanding of battery behavior and failure mechanisms. Moving forward, the systematic integration 
of robust, efficient, and user-centric XAI solutions will be essential for developing the next generation of intelligent BMS 
that are not only high-performing but also demonstrably safe, reliable, and trustworthy. The pursuit of explainability is 
fundamental to ensuring the responsible and effective deployment of AI in critical energy storage technologies. 
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