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Abstract 

Multicollinearity, a common issue in regression models caused by high correlations among explanatory variables, 
undermines the stability and reliability of traditional estimators like Ordinary Least Squares (OLS). This study 
investigates the Generalized Kibria-Lukman (GKL) estimator, introduced by Dawoud et al. (2022), which uses a flexible 
biasing parameter to address the inflated variances typical in multicollinear datasets. Through comprehensive 
simulation studies and empirical testing, we compare the GKL estimator’s performance with other biased estimators, 
including ridge regression and the Liu estimator, focusing on Mean Squared Error (MSE) as the primary evaluation 
metric. The results demonstrate that the GKL estimator consistently achieves lower MSE values, particularly in highly 
multicollinear conditions, underscoring its effectiveness as a robust alternative for improving accuracy in regression 
models where traditional methods struggle. These findings highlight the GKL estimator’s potential as a superior choice 
in complex, multicollinear regression environments. 
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1. Introduction

Multicollinearity is a common issue in linear regression analysis where explanatory variables exhibit high correlation, 
potentially leading to large variances of coefficient estimates. This issue poses significant challenges for Ordinary Least 
Squares (OLS) estimation, as high multicollinearity inflates the standard errors of estimated coefficients, causing the 
model to produce unreliable and even misleading inferences. As such, estimators may yield theoretically inconsistent 
results, where coefficient signs may contradict theoretical expectations. 

Various methods have been developed to address multicollinearity, including the ridge regression estimator proposed 
by Hoerl and Kennard (1970), the Liu estimator (1993), and more recently, the Kibria-Lukman (KL) estimator, which 
introduces a biasing parameter to stabilize estimates. Each of these biased estimators improves upon the OLS by 
controlling the variance of coefficients at the expense of introducing a small bias, thus providing more reliable estimates 
in the presence of multicollinearity. Dawoud et al. (2022) introduced a generalization of the KL estimator, termed the 
Generalized Kibria-Lukman (GKL) estimator, which features a flexible biasing parameter that adapts across 
observations. The GKL estimator aims to improve the efficiency of regression models particularly in scenarios of severe 
multicollinearity by optimizing the mean squared error (MSE). 
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This study investigates the theoretical properties of the GKL estimator, conducts simulation studies to evaluate its 
performance in comparison with OLS, generalized ridge, and Liu estimators, and applies the GKL estimator to a real-
world dataset to validate its practical applicability. 

2. Materials and Methods 

2.1. Linear Regression Model and Multicollinearity 

Consider a standard linear regression model: 

𝑦 = 𝑋𝛽 + 𝜖 

where 𝑦 is the vector of observations on the dependent variable, 𝑋 is the matrix of explanatory variables, 𝛽 is the vector 
of regression coefficients, and 𝜖 is the vector of normally distributed errors with mean zero and variance 𝜎2𝐼𝑛. 

When multicollinearity is present, the columns of 𝑋 are highly correlated, making the estimation of 𝛽 problematic. This 
multicollinearity inflates the variances of the OLS estimates of 𝛽, which can produce unreliable estimates with large 
standard errors. As a result, confidence intervals for coefficients widen, and significance tests lose reliability, often 
leading to erroneous inferences. 

2.2. Biased Estimators 

To address multicollinearity, biased estimators are commonly employed, including the following: 

Ridge Regression Estimator: Introduced by Hoerl and Kennard, the ridge estimator addresses multicollinearity by 
adding a regularization term to the OLS estimator: 

�̂�𝑟𝑖𝑑𝑔𝑒 = (𝑋′𝑋 + 𝑘𝐼)−1𝑋′𝑦 

where 𝑘 is a constant that shrinks the estimated coefficients and reduces variance. 

Liu Estimator: This estimator introduces a biasing parameter 𝑑  that also addresses the high variance caused by 
multicollinearity: 

�̂�𝐿𝑖𝑢 = (𝑋′𝑋 + 𝑑𝐼)−1(𝑋′𝑋 + 𝐼)�̂�𝑂𝐿𝑆 

where 0 < 𝑑 < 1. 

Kibria-Lukman (KL) Estimator: This ridge-type estimator was proposed to minimize the adverse effects of 
multicollinearity by employing a different form of shrinkage. The KL estimator is defined as: 

�̂�𝐾𝐿 = (𝑋′𝑋 + 𝑘𝐼)−1(𝑋′𝑋 − 𝑘𝐼)�̂�𝑂𝐿𝑆 

where 𝑘 > 0 serves as the biasing parameter. 

2.3. Generalized Kibria-Lukman (GKL) Estimator 

The GKL estimator generalizes the KL estimator by introducing observation-specific biasing parameters, allowing the 
estimator to adapt to varying levels of multicollinearity across observations. This estimator is defined as: 

�̂�𝐺𝐾𝐿 = (𝑋′𝑋 + 𝐾)−1(𝑋′𝑋 − 𝐾)�̂�𝑂𝐿𝑆 

where 𝐾 is a diagonal matrix with observation-specific biasing parameters, optimizing MSE in high-multicollinearity 
settings. By adjusting biasing parameters for each observation, the GKL estimator aims to achieve a balance between 
bias and variance, yielding more stable and reliable estimates. 
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3. Simulation Study 

The simulation study evaluates the performance of the GKL estimator against OLS, ridge, and Liu estimators under 
various levels of multicollinearity and error variance. The following simulation parameters were used: 

Parameter Values 

Sample sizes 50, 100, 150 

Error variance (𝜎) 1, 5, 10 

Correlation among predictors (𝜌) 0.8, 0.9, 0.99 

Number of predictors (𝑝) 3, 7 

For each combination of parameters, 1,000 replications were conducted to estimate the Mean Squared Error (MSE) for 
each estimator. 

Table 1 Simulation Results for Mean Squared Error (MSE) with 3 Predictors (𝒑 = 𝟑) 

Sample Size 
𝒏 

Error Variance 
𝝈 

Predictor 
Correlation 𝝆 

OLS 
MSE 

Ridge 
MSE 

Liu MSE KL MSE GKL 
MSE 

50 1 0.8 0.1249 0.1094 0.1021 0.0918 0.0871 
  

0.9 0.2260 0.1829 0.1723 0.1604 0.1483 
  

0.99 2.0641 1.1439 1.1028 1.0842 0.9845 

100 5 0.8 3.1235 1.7550 1.5322 1.4590 1.3072 
  

0.9 5.6491 2.8600 2.6431 2.5102 2.2487 
  

0.99 51.6036 22.2378 20.9123 18.7532 16.5468 

The simulation results displayed in Table 1 reveal the performance of various estimators—Ordinary Least Squares 
(OLS), Ridge, Liu, Kibria-Lukman (KL), and Generalized Kibria-Lukman (GKL)—under different conditions of 
multicollinearity and sample sizes. The Mean Squared Error (MSE) serves as the evaluation metric across these varying 
conditions, providing insight into the relative efficiency and stability of each estimator. 

For a sample size of n=50 and low error variance (σ=1), as predictor correlation ρ increases from 0.8 to 0.99, the MSE 
values for all estimators rise. However, this increase is markedly less pronounced for biased estimators, particularly for 
KL and GKL. At ρ=0.8, OLS exhibits an MSE of 0.1249, whereas Ridge, Liu, KL, and GKL achieve progressively lower MSEs, 
with GKL attaining the lowest MSE at 0.0871. This trend persists as ρ intensifies; when ρ=0.9, GKL’s MSE (0.1483) 
remains lower than that of all other estimators. At an extremely high correlation level (ρ=0.99), OLS reaches an MSE of 
2.0641, signifying substantial inefficiency, while GKL maintains a comparatively lower MSE of 0.9845. This indicates 
that GKL handles multicollinearity far better than OLS and even outperforms Ridge, Liu, and KL in controlling the error 
under high multicollinearity conditions. 

Increasing the sample size to n=100 and raising error variance to σ=5 provides further evidence of GKL’s robust 
performance. At ρ=0.8, OLS has an MSE of 3.1235, indicating notable inefficiency compared to the biased estimators, 
particularly GKL, which records an MSE of 1.3072—the lowest among all estimators tested. As correlation increases to 
ρ=0.9, OLS’s MSE rises to 5.6491, while GKL retains the lowest MSE at 2.2487, showcasing its superior bias-variance 
trade-off. In extreme multicollinearity (ρ=0.99), OLS’s MSE skyrockets to 51.6036, an indicator of its substantial 
inefficiency under severe multicollinearity. Meanwhile, GKL exhibits a comparatively stable MSE of 16.5468, suggesting 
that it maintains better accuracy and efficiency under these challenging conditions than the other estimators. 

The MSE comparisons in Table 1 illustrate the consistent advantage of the GKL estimator across different levels of 
predictor correlation and sample sizes. As multicollinearity intensifies, GKL consistently exhibits the lowest MSE values, 
highlighting its robustness in handling high-dimensional multicollinear data. 
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Table 2 Simulation Results for MSE with 7 Predictors (𝒑 = 𝟕) 

Sample 
Size 𝒏 

Error 
Variance 𝝈 

Predictor 
Correlation 𝝆 

OLS MSE Ridge 
MSE 

Liu MSE KL MSE GKL MSE 

50 10 0.8 41.4272 21.1839 19.7721 18.6023 15.5082 
  

0.9 77.9186 39.4124 37.0942 34.6021 28.5547 
  

0.99 738.6690 370.3048 362.0176 334.2045 265.3667 

In Table 2, the simulation results reveal the impact of an increased number of predictors (p=7), a high error variance 
(σ=10), and varying degrees of predictor correlation (ρ) on the Mean Squared Error (MSE) across five estimators: 
Ordinary Least Squares (OLS), Ridge, Liu, Kibria-Lukman (KL), and Generalized Kibria-Lukman (GKL). These results 
underscore the GKL estimator's relative efficiency in managing both multicollinearity and a larger predictor set under 
high variance conditions. 

For a sample size of n=50 with moderate multicollinearity (ρ=0.8), we observe substantial differences in MSE values 
across estimators. The OLS estimator records a notably high MSE of 41.4272, reflecting its poor handling of both 
multicollinearity and high variance. Ridge, Liu, and KL estimators show progressively better performance, with KL 
reaching an MSE of 18.6023. However, GKL outperforms all, achieving the lowest MSE of 15.5082—demonstrating its 
superior ability to balance bias and variance under moderate multicollinearity and substantial predictor variance. 

As predictor correlation intensifies to ρ=0.9, the MSE for each estimator rises, although the magnitude of this increase 
varies significantly. OLS, with an MSE of 77.9186, shows a nearly twofold increase, emphasizing its sensitivity to higher 
multicollinearity. In comparison, Ridge, Liu, and KL maintain better control over MSE growth, with KL reaching 34.6021. 
GKL, however, stands out with an MSE of 28.5547, once again demonstrating its robustness by yielding the lowest error 
even as multicollinearity intensifies. This substantial reduction in MSE for GKL relative to other estimators highlights 
its efficacy in balancing the bias introduced by multicollinearity with the need for stable variance in parameter 
estimates. 

Under extreme multicollinearity (ρ=0.99), the efficiency of each estimator is further strained. OLS shows a dramatic 
escalation in MSE, soaring to 738.6690, reflecting its severe inefficiency in highly multicollinear data. Ridge and Liu 
estimators demonstrate some resilience, but still register very high MSE values of 370.3048 and 362.0176, respectively, 
indicating that even these biased estimators struggle under such extreme conditions. KL reduces the MSE further to 
334.2045, but the GKL estimator achieves the most significant improvement, attaining the lowest MSE of 265.3667. This 
marked reduction emphasizes GKL’s unique strength in managing the compounded complexity of seven highly 
correlated predictors, high variance, and limited sample size. 

Table 2 illustrates the consistent advantage of the GKL estimator across escalating levels of predictor correlation and 
error variance. Particularly under severe multicollinearity (ρ=0.99), the GKL estimator demonstrates resilience, 
maintaining the lowest MSE compared to all other estimators tested. The results reinforce the GKL estimator’s 
adaptability in handling data with a large number of correlated predictors and significant error variance, making it a 
highly effective choice for complex regression models where traditional approaches like OLS and even other biased 
estimators fall short. 

4. Empirical Application 

To assess practical performance, we applied the GKL estimator to a real-world dataset with known multicollinearity 
among predictors, such as the Portland cement dataset. The dependent variable is the heat evolved, with four predictors 
showing significant correlation. 

The Mean Squared Error (MSE) results for the Portland cement dataset presented in Table 3 provide a clear comparison 
of estimator performance under real-world multicollinearity. This dataset, known for its high correlation among 
explanatory variables, offers an opportunity to assess the efficacy of different estimators—Ordinary Least Squares 
(OLS), Ridge, Liu, Kibria-Lukman (KL), and Generalized Kibria-Lukman (GKL)—in producing stable and reliable 
parameter estimates. 
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Table 3 Comparison of MSE for Cement Dataset 

Estimator MSE 

OLS 0.0638 

Ridge 0.0581 

Liu 0.0554 

KL 0.0522 

GKL 0.0486 

The OLS estimator, despite being a standard approach in linear regression, exhibits the highest MSE at 0.0638. This 
relatively elevated MSE reflects OLS’s well-documented limitations in handling multicollinearity. The high correlation 
among predictors inflates variances, leading to less stable estimates and greater error, which is evident from the higher 
MSE compared to other estimators specifically designed to manage multicollinearity. 

The Ridge estimator, which introduces a penalty term to control large coefficient estimates, achieves a lower MSE of 
0.0581. This decrease from the OLS MSE suggests that Ridge is able to provide more reliable estimates by balancing the 
trade-off between variance reduction and bias. By shrinking coefficients, Ridge mitigates some of the instability caused 
by multicollinearity, resulting in a tangible improvement in estimator efficiency. 

The Liu estimator further reduces MSE to 0.0554, showing a slight yet notable improvement over Ridge. The Liu 
estimator’s unique biasing parameter helps to control multicollinearity’s effects more effectively than Ridge. This 
improvement highlights the estimator’s ability to fine-tune biasing to stabilize coefficient estimates, achieving a better 
balance than Ridge between bias and variance. 

The KL estimator, specifically formulated to address multicollinearity through a tailored biasing approach, 
demonstrates an even greater reduction in MSE, achieving a value of 0.0522. The lower MSE here indicates that KL is 
more effective at managing the impact of high correlations among predictors, which is critical in the Portland cement 
dataset. By introducing an optimal bias, KL provides a more stable estimation than both Ridge and Liu, thus yielding 
more precise parameter estimates and reducing error further. 

The GKL estimator, the most advanced of the five tested, achieves the lowest MSE at 0.0486. This result confirms GKL’s 
theoretical advantages over its predecessors, as it incorporates observation-specific biasing parameters that adapt 
more closely to the structure of multicollinearity within the dataset. By allowing each observation’s contribution to vary, 
GKL is able to optimally control variance while minimizing error, outperforming OLS, Ridge, Liu, and KL estimators. The 
MSE reduction with GKL—by over 23% compared to OLS—underscores its effectiveness in delivering robust and 
reliable estimates under real-world multicollinearity conditions. 

The MSE values in Table 3 illustrate a clear hierarchy among the estimators, with GKL emerging as the most efficient. 
Each successive estimator builds upon the previous, introducing more sophisticated techniques to manage the adverse 
effects of multicollinearity. GKL’s adaptable biasing approach demonstrates the greatest accuracy and stability, making 
it the preferred choice for regression models with complex multicollinearity, such as in the Portland cement dataset. 
This progression from OLS to GKL not only highlights the limitations of traditional estimators in the face of 
multicollinearity but also underscores the value of targeted modifications that improve estimator performance in 
complex real-world applications. 

5. Conclusion 

The Generalised Kibria-Lukman (GKL) estimator is an advanced regression tool capable of effectively addressing 
multicollinearity by flexibly adjusting its biasing parameters. This study confirms that the GKL estimator offers superior 
accuracy, evidenced by consistently lower MSE across simulation scenarios and empirical validation. The GKL estimator 
shows promise as a reliable alternative to traditional OLS and biased estimators, particularly in high-dimensional and 
multicollinear settings. 
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